Saturday, 14 October 2017

Moving Durchschnittlich Gelösten Beispiele


OR-Notes sind eine Reihe von einleitenden Bemerkungen zu Themen, die unter die breite Überschrift des Bereichs Operations Research (OR) fallen. Sie wurden ursprünglich von mir in einer einleitenden ODER-Kurs Ich gebe am Imperial College verwendet. Sie stehen nun für alle Studenten und Lehrer zur Verfügung, die an den folgenden Bedingungen interessiert sind. Eine vollständige Liste der Themen in OR-Notes finden Sie hier. Prognosebeispiel Prognosebeispiel 1996 UG-Prüfung Die Nachfrage nach einem Produkt in den letzten fünf Monaten ist nachfolgend dargestellt. Verwenden Sie einen zweimonatigen gleitenden Durchschnitt, um eine Prognose für die Nachfrage in Monat 6 zu generieren. Wenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,9 an, um eine Prognose für die Nachfrage nach Nachfrage im Monat 6 zu generieren. Welche dieser beiden Prognosen bevorzugen Sie und warumDie zwei Monate in Bewegung Durchschnitt für die Monate zwei bis fünf ist gegeben durch: Die Prognose für den sechsten Monat ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt für den Monat 5 m 5 2350. Beim Anwenden einer exponentiellen Glättung mit einer Glättungskonstante von 0,9 erhalten wir: Wie zuvor Die Prognose für Monat sechs ist nur der Durchschnitt für Monat 5 M 5 2386 Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir für den gleitenden Durchschnitt MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16,67 und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0,9 MSD (13 - 17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Insgesamt sehen wir, dass die exponentielle Glättung die besten Prognosen für einen Monat liefert, da sie eine niedrigere MSD aufweist. Daher bevorzugen wir die Prognose von 2386, die durch exponentielle Glättung erzeugt wurde. Prognosebeispiel 1994 UG-Prüfung Die folgende Tabelle zeigt die Nachfrage nach einem neuen Aftershave in einem Geschäft für die letzten 7 Monate. Berechnen Sie einen zweimonatigen gleitenden Durchschnitt für die Monate zwei bis sieben. Was würden Sie Ihre Prognose für die Nachfrage in Monat acht Bewerben exponentielle Glättung mit einer Glättungskonstante von 0,1, um eine Prognose für die Nachfrage in Monat acht abzuleiten. Welche der beiden Prognosen für den Monat acht bevorzugen Sie und warum Der Ladenbesitzer glaubt, dass Kunden auf diese neue Aftershave von anderen Marken umschalten. Erläutern Sie, wie Sie dieses Schaltverhalten modellieren und die Daten anzeigen können, die Sie benötigen, um zu bestätigen, ob diese Umschaltung stattfindet oder nicht. Der zweimonatige Gleitender Durchschnitt für die Monate zwei bis sieben ist gegeben durch: Die Prognose für Monat acht ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt für Monat 7 m 7 46. Anwendung exponentieller Glättung mit einer Glättungskonstante von 0,1 wir Erhalten: Wie vorher ist die Prognose für Monat acht gerade der Durchschnitt für Monat 7 M 7 31.11 31 (da wir nicht fraktionierte Nachfrage haben können). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,1 Insgesamt sehen wir, dass die zwei Monate gleitenden Durchschnitt scheinen die besten einen Monat prognostiziert, da es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch die zwei Monate gleitenden Durchschnitt produziert wurde. Um das Switching zu untersuchen, müssten wir ein Markov-Prozeßmodell verwenden, bei dem die Zustandsmarken verwendet werden, und wir müssten anfängliche Zustandsinformationen und Kundenvermittlungswahrscheinlichkeiten (von Umfragen) benötigen. Wir müssten das Modell auf historischen Daten laufen lassen, um zu sehen, ob wir zwischen dem Modell und dem historischen Verhalten passen. Prognosebeispiel 1992 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Rasierklinge in einem Geschäft für die letzten neun Monate. Berechnen Sie einen dreimonatigen gleitenden Durchschnitt für die Monate drei bis neun. Was wäre Ihre Prognose für die Nachfrage in Monat 10 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,3, um eine Prognose für die Nachfrage in Monat zehn ableiten. Welche der beiden Prognosen für Monat zehn bevorzugen Sie und warum Der dreimonatige gleitende Durchschnitt für die Monate 3 bis 9 ist gegeben durch: Die Prognose für Monat 10 ist nur der gleitende Durchschnitt für den Monat vorher, dass also der gleitende Durchschnitt für Monat 9 m 9 20.33. Die Prognose für den Monat 10 ist daher 20. Die Anwendung der exponentiellen Glättung mit einer Glättungskonstante von 0,3 ergibt sich wie folgt: Nach wie vor ist die Prognose für Monat 10 nur der Durchschnitt für Monat 9 M 9 18,57 19 (wie wir Kann nicht gebrochene Nachfrage). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,3 Insgesamt sehen wir, dass der dreimonatige gleitende Durchschnitt scheint die besten einen Monat voraus Prognosen geben, wie es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 20, die durch die drei Monate gleitenden Durchschnitt produziert wurde. Prognosebeispiel 1991 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Faxgeräten in einem Kaufhaus in den letzten zwölf Monaten. Berechnen Sie die vier Monate gleitenden Durchschnitt für die Monate 4 bis 12. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Wenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,2, um eine Prognose für die Nachfrage in Monat 13 ableiten. Welche der beiden Prognosen für Monat 13 lieber und warum Welche anderen Faktoren, die in den obigen Berechnungen nicht berücksichtigt werden, können die Nachfrage nach dem Faxgerät im Monat 13 beeinflussen. Der viermonatige Gleitende Durchschnitt für die Monate 4 bis 12 ist gegeben durch: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35,75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für den Monat zuvor, dh der gleitende Durchschnitt Für den Monat 12 m 12 46,25. Die Prognose für den Monat 13 ist also 46. Wenn wir eine exponentielle Glättung mit einer Glättungskonstante von 0,2 anwenden, erhalten wir: Wie vorher ist die Prognose für den Monat 13 nur der Durchschnitt für den Monat 12 M 12 38,618 39 (wie wir Kann nicht gebrochene Nachfrage). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,2 Insgesamt sehen wir, dass die vier Monate gleitenden Durchschnitt scheint die besten einen Monat voraus Prognosen geben, wie es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch die vier Monate gleitenden Durchschnitt produziert wurde. Saisonale Nachfrage Werbung Preisänderungen, sowohl diese Marke und andere Marken allgemeine wirtschaftliche Situation neue Technologie Prognosebeispiel 1989 UG-Prüfung Die folgende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Mikrowellenherd in einem Kaufhaus in jedem der letzten zwölf Monate. Berechnen Sie für jeden Monat einen Sechsmonatsdurchschnitt. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,7, um eine Prognose für die Nachfrage in Monat 13 ableiten. Welche der beiden Prognosen für den Monat 13 bevorzugen Sie und warum Jetzt können wir nicht berechnen, ein sechs Monat, bis wir mindestens 6 Beobachtungen haben - dh wir können nur einen solchen Durchschnitt ab dem 6. Monat berechnen. Daher haben wir: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für die Monat vor, dh der gleitende Durchschnitt für Monat 12 m 12 38,17. Die Prognose für den 13. Monat ist also 38. Wenn wir eine exponentielle Glättung mit einer Glättungskonstante von 0,7 anwenden, erhalten wir: Berechnen der gleitenden Mittelwerte in Excel Excel-Datenanalyse für Dummies, 2. Auflage Der Datenanalyse-Befehl stellt eine Werkzeug zum Berechnen von verschobenen und exponentiell geglätteten Durchmessern in Excel. Nehmen Sie an, um zu veranschaulichen, dass Sie tägliche Temperaturinformationen gesammelt haben. Sie wollen den dreitägigen gleitenden Durchschnitt 8212 den Durchschnitt der letzten drei Tage 8212 als Teil einer einfachen Wettervorhersage berechnen. Gehen Sie folgendermaßen vor, um die gleitenden Mittelwerte für diesen Datensatz zu berechnen. Um einen gleitenden Durchschnitt zu berechnen, klicken Sie zuerst auf die Schaltfläche Data tab8217s Data Analysis. Wenn Excel das Dialogfeld Datenanalyse anzeigt, wählen Sie aus der Liste den Eintrag Moving Average aus, und klicken Sie dann auf OK. Excel zeigt das Dialogfeld "Gleitender Durchschnitt" an. Identifizieren Sie die Daten, die Sie verwenden möchten, um den gleitenden Durchschnitt zu berechnen. Klicken Sie im Dialogfeld "Gleitender Durchschnitt" in das Eingabebereichsfeld. Identifizieren Sie dann den Eingabebereich, indem Sie entweder eine Arbeitsbereichsadresse eingeben oder mit der Maus den Arbeitsbereich auswählen. Ihre Bereichsreferenz sollte absolute Zellenadressen verwenden. Eine absolute Zellenadresse steht vor dem Spaltennamen und der Zeilennummer mit Vorzeichen, wie in A1: A10. Wenn die erste Zelle in Ihrem Eingabebereich eine Textbeschriftung enthält, um Ihre Daten zu identifizieren oder zu beschreiben, aktivieren Sie das Kontrollkästchen Labels in First Row. Erklären Sie im Textfeld Interval, wie viele Werte in die gleitende Durchschnittsberechnung einbezogen werden sollen. Sie können einen gleitenden Durchschnitt mit einer beliebigen Anzahl von Werten berechnen. Standardmäßig verwendet Excel die letzten drei Werte, um den gleitenden Durchschnitt zu berechnen. Um festzulegen, dass eine andere Anzahl von Werten zur Berechnung des gleitenden Durchschnitts verwendet werden soll, geben Sie diesen Wert in das Textfeld Intervall ein. Sagen Sie Excel, wo die gleitenden Durchschnittsdaten platziert werden sollen. Verwenden Sie das Textfeld Ausgabebereich, um den Arbeitsblattbereich zu identifizieren, in dem Sie die gleitenden Durchschnittsdaten platzieren möchten. In dem Arbeitsblattbeispiel wurden die gleitenden Durchschnittsdaten in den Arbeitsblattbereich B2: B10 platziert. (Optional) Geben Sie an, ob ein Diagramm gewünscht wird. Wenn Sie ein Diagramm möchten, das die gleitenden Durchschnittsinformationen darstellt, aktivieren Sie das Kontrollkästchen "Diagrammausgabe". (Optional) Geben Sie an, ob Standardfehlerinformationen berechnet werden sollen. Wenn Sie Standardfehler für die Daten berechnen möchten, aktivieren Sie das Kontrollkästchen Standardfehler. Excel legt Standardfehlerwerte neben den gleitenden Mittelwerten fest. (Die Standardfehlerinformationen gehen zu C2: C10.) Nachdem Sie die Angabe, welche gleitenden durchschnittlichen Informationen Sie berechnen lassen möchten und wo Sie sie platzieren möchten, klicken Sie auf OK. Excel berechnet gleitende Durchschnittsinformationen. Hinweis: Wenn Excel doesn8217t über genügend Informationen verfügt, um einen gleitenden Durchschnitt für einen Standardfehler zu berechnen, legt er die Fehlermeldung in die Zelle. Sie können sehen, mehrere Zellen, die diese Fehlermeldung als value. Moving Averages sehen: Was sind sie Unter den beliebtesten technischen Indikatoren werden gleitende Mittelwerte verwendet, um die Richtung des aktuellen Trends zu messen. Jede Art von gleitendem Durchschnitt (gemeinhin in diesem Tutorial als MA geschrieben) ist ein mathematisches Ergebnis, das durch Mittelung einer Anzahl von vergangenen Datenpunkten berechnet wird. Sobald dies bestimmt ist, wird der daraus resultierende Mittelwert auf eine Tabelle aufgetragen, um es den Händlern zu ermöglichen, auf geglättete Daten zu schauen, anstatt sich auf die täglichen Preisschwankungen zu konzentrieren, die in allen Finanzmärkten inhärent sind. Die einfachste Form eines gleitenden Durchschnitts, der als einfacher gleitender Durchschnitt (SMA) bekannt ist, wird berechnet, indem das arithmetische Mittel eines gegebenen Satzes von Werten genommen wird. Um beispielsweise einen gleitenden 10-Tage-Durchschnitt zu berechnen, würden Sie die Schlusskurse der letzten 10 Tage addieren und dann das Ergebnis mit 10 teilen. In Abbildung 1 ist die Summe der Preise für die letzten 10 Tage (110) Geteilt durch die Anzahl von Tagen (10), um den 10-Tage-Durchschnitt zu erreichen. Wenn ein Trader einen 50-Tage-Durchschnitt sehen möchte, würde die gleiche Art der Berechnung gemacht, aber er würde auch die Preise in den letzten 50 Tagen enthalten. Der daraus resultierende Durchschnitt unter (11) berücksichtigt die letzten 10 Datenpunkte, um den Händlern eine Vorstellung davon zu geben, wie ein Vermögenswert im Verhältnis zu den vergangenen 10 Tagen bewertet wird. Vielleicht fragen Sie sich, warum technische Händler nennen dieses Tool einen gleitenden Durchschnitt und nicht nur ein normaler Durchschnitt. Die Antwort ist, dass, wenn neue Werte verfügbar werden, die ältesten Datenpunkte aus dem Satz fallen gelassen werden müssen und neue Datenpunkte hereinkommen müssen, um sie zu ersetzen. Somit bewegt sich der Datensatz ständig auf neue Daten, sobald er verfügbar ist. Diese Berechnungsmethode stellt sicher, dass nur die aktuellen Informationen berücksichtigt werden. Wenn in Fig. 2 der neue Wert von 5 zu dem Satz hinzugefügt wird, bewegt sich das rote Feld (das die letzten 10 Datenpunkte darstellt) nach rechts und der letzte Wert von 15 wird aus der Berechnung entfernt. Weil der relativ kleine Wert von 5 den hohen Wert von 15 ersetzt, würden Sie erwarten, dass der Durchschnitt des Datensatzabbaus zu sehen, was er tut, in diesem Fall von 11 bis 10. Wie sehen sich die gleitenden Mittelwerte aus? MA berechnet worden sind, werden sie auf ein Diagramm aufgetragen und dann verbunden, um eine gleitende mittlere Linie zu erzeugen. Diese Kurvenlinien sind auf den Diagrammen der technischen Händler üblich, aber wie sie verwendet werden, können drastisch variieren (mehr dazu später). Wie Sie in Abbildung 3 sehen können, ist es möglich, mehr als einen gleitenden Durchschnitt zu irgendeinem Diagramm hinzuzufügen, indem man die Anzahl der Zeitperioden, die in der Berechnung verwendet werden, anpasst. Diese kurvenreichen Linien scheinen vielleicht ablenkend oder verwirrend auf den ersten, aber youll wachsen Sie daran gewöhnt, wie die Zeit vergeht. Die rote Linie ist einfach der durchschnittliche Preis in den letzten 50 Tagen, während die blaue Linie der durchschnittliche Preis in den letzten 100 Tagen ist. Nun, da Sie verstehen, was ein gleitender Durchschnitt ist und wie es aussieht, stellen Sie auch eine andere Art von gleitenden Durchschnitt ein und untersuchen, wie es sich von der zuvor genannten einfachen gleitenden Durchschnitt unterscheidet. Die einfache gleitende Durchschnitt ist sehr beliebt bei den Händlern, aber wie alle technischen Indikatoren, hat es seine Kritiker. Viele Personen argumentieren, dass die Nützlichkeit der SMA begrenzt ist, da jeder Punkt in der Datenreihe gleich gewichtet wird, unabhängig davon, wo er in der Sequenz auftritt. Kritiker argumentieren, dass die neuesten Daten bedeutender sind als die älteren Daten und sollten einen größeren Einfluss auf das Endergebnis haben. Als Reaktion auf diese Kritik begannen die Händler, den jüngsten Daten mehr Gewicht zu verleihen, was seitdem zur Erfindung verschiedener Arten von neuen Durchschnittswerten geführt hat, wobei der populärste der exponentielle gleitende Durchschnitt (EMA) ist. (Für weitere Messwerte siehe Grundlagen der gewichteten gleitenden Mittelwerte und was ist der Unterschied zwischen einer SMA und einer EMA) Exponentieller gleitender Durchschnitt Der exponentielle gleitende Durchschnitt ist eine Art von gleitendem Durchschnitt, die den jüngsten Preisen mehr Gewicht verleiht, um sie reaktionsfähiger zu machen Zu neuen Informationen. Das Erlernen der etwas komplizierten Gleichung für die Berechnung einer EMA kann für viele Händler unnötig sein, da fast alle Kartierungspakete die Berechnungen für Sie durchführen. Jedoch für Sie Mathegeeks heraus dort, ist hier die EMA-Gleichung: Wenn Sie die Formel verwenden, um den ersten Punkt der EMA zu berechnen, können Sie feststellen, dass es keinen Wert gibt, der als das vorhergehende EMA benutzt werden kann. Dieses kleine Problem kann gelöst werden, indem man die Berechnung mit einem einfachen gleitenden Durchschnitt beginnt und mit der obigen Formel fortfährt. Wir haben Ihnen eine Beispielkalkulationstabelle zur Verfügung gestellt, die praktische Beispiele enthält, wie Sie sowohl einen einfachen gleitenden Durchschnitt als auch einen exponentiellen gleitenden Durchschnitt berechnen können. Der Unterschied zwischen der EMA und SMA Nun, da Sie ein besseres Verständnis haben, wie die SMA und die EMA berechnet werden, können wir einen Blick darauf werfen, wie sich diese Mittelwerte unterscheiden. Mit Blick auf die Berechnung der EMA, werden Sie feststellen, dass mehr Wert auf die jüngsten Datenpunkte gelegt wird, so dass es eine Art von gewichteten Durchschnitt. In Abbildung 5 sind die Anzahl der Zeitperioden, die in jedem Durchschnitt verwendet werden, identisch (15), aber die EMA reagiert schneller auf die sich ändernden Preise. Beachten Sie, wie die EMA einen höheren Wert hat, wenn der Preis steigt, und fällt schneller als die SMA, wenn der Preis sinkt. Diese Reaktionsfähigkeit ist der Hauptgrund, warum viele Händler es vorziehen, die EMA über die SMA zu verwenden. Was sind die verschiedenen Tage Durchschnittliche Mittelwerte sind eine völlig anpassbare Indikator, was bedeutet, dass der Benutzer frei wählen können, was Zeitrahmen sie wollen, wenn die Schaffung der Durchschnitt. Die häufigsten Zeitabschnitte, die bei gleitenden Durchschnitten verwendet werden, sind 15, 20, 30, 50, 100 und 200 Tage. Je kürzer die Zeitspanne, die verwendet wird, um den Durchschnitt zu erzeugen, desto empfindlicher wird es für Preisänderungen sein. Je länger die Zeitspanne, desto weniger empfindlich, oder mehr geglättet, wird der Durchschnitt sein. Es gibt keinen richtigen Zeitrahmen für die Einrichtung Ihrer gleitenden Durchschnitte. Der beste Weg, um herauszufinden, welche am besten für Sie arbeitet, ist es, mit einer Reihe von verschiedenen Zeitperioden zu experimentieren, bis Sie eine finden, die zu Ihrer Strategie passt. Moving Averages: Wie Sie sie verwenden

No comments:

Post a Comment